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The temperature fields of the liquid phase and of the solid phase, and the l iquid-solid inter- 
phase boundary, are determined under conditions of forced flow through circular pipes. 

Among nonlinear problems arising from the energy equation and from the equation of heat conduction 
there stand out the problems of the Stefan kind with their many practical applications. A survey of studies 
on this kind of problems has been made in [1]. The a~hors  of [2] have succeeded in demonstrating that, 
with the assumption of a parabolic velocity profile, the problem of steady-state freezing in a circular pipe 
reduces to the Graetz problem. 

We will consider the steady-state freezing of a liquid which flows through a pipe of circular cross 
section. 

We assume that the pipe is filled with liquid and that the temperature of the liquid as well as the 
temperature of the pipe wall are at the freezing point tf. A laminar s t ream of liquid comes in through the 
entrance section, where the origin of coordinates will be located, at a constant velocity v 0 and a constant 
temperature t o . As the thermal wave front moves through the liquid, let the temperature of the pipe wall 
drop to a constant level t c below the freezing point tf. 

The problem will now be formulated with the following assumptions: 

a) heat conduction along the pipe axis through the liquid and the solid is negligible; 

b) the thermophysical properties of both phases are constant; 

e) the flow through the pipe is forced, the axial component of velocity being given by the relation 
x x = v0rl/ 2(x). 

With these assumptions, then, the energy equation for the liquid phase is 

1 OT1 -- c?2T1 L 1 OT, (1) 
6 z c~X OR" R OR 

in dimensionless form and the boundary conditions are 

OT, 
O) = 1; Tx(6, X)----O; (-O-R-in=0----- O. TI(R, 

The equation of heat conduction for the solid phase ean be written as 

d ] = 0  
L J 

and the boundary conditions as 

(2) 

(3) 

Te(1, X)= 1; T~_(6, X)= 0. (4) 
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Fig. 1 Fig. 2 Fig. 3 

F i g .  i .  Prof i les  of in te rphase  boundary as a function of the coordinate  X. 

Fig. 2. Compar i son  between tes t  values and theore t ica l  values of t h e r m a l  fluxes:  t es t  values 
accord ing  to [2] (1); calculated values accord ing  to [2] (2); calculated values accord ing  to f o r -  
mula (11) (3). 

Fig. 3. T e m p e r a t u r e  dis t r ibut ion in the liquid (solid l ines) and in the solid l aye r  (dashed 
l ines).  

The following condition is sa t i s f ied  on the l i q u i d - s o l i d  interface:  

B OT2 R=6 071 i + - -  = 0 .  (5) 
OR jR=6 OR 

it is a s s u m e d  here ,  m o r e o v e r ,  that 6(x) becomes  nei ther  zero  nor unity. Equation (1) with the 
boundary  conditions (2) will be solved by the Gr inbe rg  method [3], which is based  on a s e r i e s  expansion 
of the solution in t e r m s  of " loca l"  eigenfunctions of the cor responding  boundary-va lue  p rob l em.  The t e m -  
p e r a t u r e  field of the liquid phase  will be e x p r e s s e d  in t e r m s  of a F o u r i e r - B e s s e l  s e r i e s  

2 S ]o(R%/0 T I -- 62 U~ , (6) 
. = l  J1(%) 

where  the coefficients  a r e  defined as follows: 

6 

U,~(X) = ~ T~RJo(R?n/O dR 
0 

and Tn a r e  the roots  of the c h a r a c t e r i s t i c  equation J0(T) = 0. 

The  coeff ic ients  of the s e r i e s  a r e  de t e rmined  by the s y s t e m  of o r d i n a r y  di f ferent ia l  equat ions:  

dUn ~ 2 Ur ~ 1 dO 

tn=| 

(7) 

where  

g,~(o) --~(o)_ ,q(v~), 

27'~Jl(gn) 7~ for 

am~ = 1 . for m = n. 

r e •  (8) 

The solution to Eq. (3) with the boundary conditions (4) is 

lnR 
T2= I - - - -  

ln6 

The par t ia l  de r iva t ives  in (5) can be de t e rmined  f rom (6) and (9), r e spec t i ve ly ,  by d i f ferent ia t ing  
with r e s p e c t  to R and evaluat ing for  R = 6. The equation of the in te rphase  boundary  prof i le  will then be 

(9) 
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The express ion  for the thermal  flux in the liquid approaching a pipe segment  of length X is 

X 

i'[ ~ ,o. x,]dx. 
0 

(10) 

(11) 

The sys tem of o rd inary  differential  equations (7), (8) and Eq. (10) is nonlinear .  It was solved n u m e r -  
ically on a MINSK-22 computer  by the method of finite d i f ferences .  Ser ies  (6) and (10) converge fast.  The 
computations have shown that four t e rms  of the s e r i e s  suffice. The values for  B = 1.786y n and Jl('/n) were  
taken f rom [4]. 

The l iqu id - so l id  interface is shown graphical ly  in Fig. 1, as a function of the dimensionless  co-  
ordinate X. The calculated s teady-s ta te  thermal  flux in the liquid is compared in Fig. 2 with exper imenta l  
and theore t ica l  resu l t s  f rom [2]. At a given m(~le of forced flow, the magnitude of the thermal  flux is 
somewhere  between the theoret ical  and the exper imental  values in [2]. The t empera tu re  distr ibutions in the 
liquid s t r e a m  and in the solid l aye r  a re  shown graphical ly  in Fig. 3. 

t 

V 

X 

r 

fl 

x 

T t = (t 1 - t f ) / ( t 0 - t  f) 
T 2 = ( t~ - t f ) / ( t  c - t f )  
Pe  = 2v0r 0/a 
X = 2 x / r o P e  
R = r / r  0 
6 = ~ / r  0 
B = X2(tf-t c ) / ; h ( to - f t )  
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Q = q/~vorgco( to- t  f) 
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N O T A T I O N  

tempera ture ;  
veloci ty of liquid; 
axial coordinate;  
radial  coordinate;  
radius of l i qu id - so l i d  interface; 
thermal  diffusivity of liquid; 
thermal  conductivity; 
d imensionless  t empera tu re  of liquid phase; 
d imensionless  t empera tu re  of solid phase; 
Pec le t  number;  
d imensionless  axial coordinate;  
d imensionless  radial  coordinate;  
d imensionless  radius of interface;  
dimens ionless p a r am e te r  of freezing; 
thermal  flux; 
specif ic  heat  of liquid; 
densi ty of liquid; 
d imensionless  thermal  flux. 
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