STEADY~-STATE FREEZING OF A LIQUID DURING
LAMINAR FLOW THROUGH PIPES

V. A, Makhin and A. G. Yakovenko UDC 536.421.4

The temperature fields of the liquid phase and of the solid phase, and the liquid—solid inter-
phase boundary, are determined under conditions of forced flow through circular pipes.

Among nonlinear problems arising from the energy equation and from the equation of heat conduction
there stand out the problems of the Stefan kind with their many practical applications. A survey of studies
on this kind of problems has been made in [L], The authors of [2] have succeeded in demonstrating that,
with the assumption of a parabolic velocity profile, the problem of steady-~state freezing in a circular pipe
reduces to the Graetz problem.

We will consider the steady-state freezing of a liquid which flows through a pipe of circular cross
section,

We assume that the pipe is filled with liquid and that the temperature of the liquid as well as the
temperature of the pipe wall are at the freezing point tf. A laminar stream of liquid comes in through the
enfrance section, where the origin of coordinates will be located, at a constant velocity vy and a constant
temperature t;. As the thermal wave front moves through the liquid, let the temperature of the pipe wall
drop to a constant level t, below the freezing point t.

The problem will now be formulated with the following assumptions:
a) heat conduction along the pipe axis through the liquid and the solid is negligible;
b) the thermophysical properties of both phases are constant;

c) the flow through the pipe is forced, the axial component of velocity being given by the relation
Xy = Vora/E(x).
With these assumptions, then, the energy equation for the liquid phase is
1 or, &7, 1 oy

T ox TR R R @
in dimensionless form and the boundary conditions are
TUR, 0)=1; T8, X)=0; ( 321 )R=0 =0. (2
The equation of heat conduction for the solid phase can be written as
A4 [ RAT: ] ~0 3)
drR dR
and the boundary conditions as
T, X)=1; Ty 6, X)=0. 4
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Fig. 1 Fig. 2 Fig. 3
-Fig. 1. Profiles of interphase boundary as a function of the coordinate X.

Fig. 2. Comparison between test values and theoretical values of thermal fluxes: test values
according to [2] (1); calculated values according to [2] (2); calculated values according to for-
mula (11) (3).

Fig. 3. Temperature distribution in the liquid (solid lines) and in the solid layer (dashed
lines).

The following condition is satisfied on the liquid—solid interface:

oT; |
o =0. 5)

OR Ires  OR |ges

It is assumed here, moreover, that 6(x) becomes neither zero nor unity. Equation (1) with the
boundary conditions (2) will be solved by the Grinberg method [3], which is based on a series expansion
of the solution in terms of "ocal" eigenfunctions of the corresponding boundary-value problem. The tem-
perature field of the liquid phase will be expressed in terms of a Fourier —Bessel series

Jo(Ry, /6)
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= 2
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where the coefficients are defined as follows:

Un(X) = | ToRI|(Ry,/8) dR

Bty

and v, are the roots of the characteristic equation Jy(y) = 0.

The coefficients of the series are determined by the system of ordinary differential equations:

dUn +,Yg Un:_]__ "L‘@*Eanmum’ (7)
dX " 6 d m==}
where
&0
Un(o) = _'_(")” Jl(vn)’
— M for m+ A, (8)

Lpm = 7
" Ty Vm) (s — ¥R
Oy = 1 for =M.

The solution to Eq, (3) with the boundary conditions (4) is

InR (9)
ns

T,=1—

The partial derivatives in (5) can be determined from (6) and (9), respectively, by differentiating
with respect to R and evaluating for R = 6. The equation of the interphase boundary profile will then be
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The expression for the thermal flux in the liquid approaching a pipe segment of length X is
A
Q=2 | [ sgi(a X)} dx. (11)

0

The system of ordinary differential equations (7), (8) and Eq. (10) is nonlinear. It was solved numer-
ically on a MINSK-22 computer by the method of finite differences. Series (6) and (10) converge fast, The
computations have shown that four terms of the series suffice, The values for B = 1.786 v, and J;(y,) were
taken from [4].

The liquid —solid interface is shown graphically in Fig, 1, as a function of the dimensionless co-
ordinate X. The calculated steady-state thermal flux in the liquid is compared in Fig. 2 with experimental
and theoretical results from [2]. At a given mode of forced flow, the magnitude of the thermal flux is
somewhere between the theoretical and the experimental values in [2]. The temperature distributions in the
liquid stream and in the solid layer are shown graphically in Fig. 3.

NOTATION
t is the temperature;
v is the velocity of liquid;
X is the axial coordinate;
r is the radial coordinate;
¢ is the radius of liquid—solid interface;
a is the thermal diffusivity of liquid;
A is the thermal conductivity;
Ty = (t —tp) /(tg—tp is the dimensionless temperature of liquid phase;
Ty = (t—tg) /(to—tg) is the dimensionless temperature of solid phase;
Pe = 2vyry/a is the Peclet number;
X = 2x/r0Pe is the dimensionless axial coordinate;
R=r/r, is the dimensionless radial coordinate;
o =¢/1 is the dimensionless radius of interface;
B = M(tf—te) /M(tg—ft)  is the dimensionless parameter of freezing;
q is the thermal flux;
c is the specific heat of liquid;
7] is the density of liquid;
Q = q/ 1vgrico(ty~ts) is the dimensionless thermal flux.
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